Tank and refillable pod devices had similar estimated nicotine flux during use.

Disposable pod and disposable devices had similar estimated upper limit of nicotine flux.

Nicotine Flux by ENDS Device Type: Findings from Wave 5 of the VAPER Study

Background

Nicotine flux is the amount of nicotine emitted per second by an electronic nicotine delivery system (ENDS) device and could become a useful regulatory target. We analyzed data from a national survey to estimate and compare nicotine flux by device type.

Methods

- Sample included US adults (21+) who used ENDS 5+ days/week (n=1,289), with most (96%) being daily users.
- The web-based survey was completed in Feb.-April 2023.
- Nicotine flux was calculated by multiplying the device wattage, liquid nicotine concentration, and coefficients accounting for PG/VG’s impact on flux.
- The wattage of tank and refillable pod batteries during use was determined using photos of visual displays, aggregated wattage data from others’ visual displays, self-reported data, and a wattage calculator.
- The upper limit of wattage for disposable pod and disposable batteries was determined using multimeter measurements and website-reported data.
- Nicotine concentration and PG/VG were determined using photos of liquids and self-reported data.
- The Mann-Whitney U test was used to compare flux and upper limit of flux between device types.
- Median nicotine flux during use was reported for tanks and refillable pods, and the median of the nicotine flux upper limit was reported for disposable pods and disposables.

Results

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Median Estimated Flux (µg/s)</th>
<th>25th %ile</th>
<th>75th %ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanks (n=290)</td>
<td>48</td>
<td>33</td>
<td>84</td>
</tr>
<tr>
<td>Refillable pods (n=308)</td>
<td>62</td>
<td>22</td>
<td>113</td>
</tr>
</tbody>
</table>

Differences were not statistically significant, p=0.42

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Median Estimated Upper Limit Flux (µg/s)</th>
<th>25th %ile</th>
<th>75th %ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposables (n=521)</td>
<td>151</td>
<td>138</td>
<td>151</td>
</tr>
<tr>
<td>Disposable pods (n=170)</td>
<td>142</td>
<td>88</td>
<td>174</td>
</tr>
</tbody>
</table>

Differences were not statistically significant, p=0.88

Limitations

Sources and methods used to create the wattage variable varied by device type, which could introduce bias. Devices repeatedly represented in the sample by aggregated data could limit total variation and the distributions.

Authors

Jeffrey J. Hardesty, Elizabeth Crespi, Qinghua Nian, Kevin Welding, Soha Talih, Alison B. Breland, Thomas Eissenberg, Joanna Cohen

This research was funded by NIDA and FDA Center for Tobacco Products (CTP) under Award Number U54DA036105. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the FDA.

The work being presented has received funding or other means of support from any of the following sources:

- Tobacco industry
- E-cigarette & nicotine product industry
- Pharma industry

Authors have received funding (including consultancy) from any of the following sources in the past 5 years:

- NO
- NO
- NO

Competing Interests: Dr. Eissenberg is a paid consultant in litigation against the tobacco industry as also the electronic cigarette industry and is named on one patent for a device that measures the puffing behavior of electronic cigarette users, on another patent application for a smartphone app that determines electronic cigarette device and liquid characteristics, and a third patent application for a smoking cessation intervention. Dr. Cohen is a paid consultant in litigation against a tobacco company.

Learn more about the Vaping and Patterns of E-cigarette Use Research (VAPER) Study at publichealth.jhu.edu/igtc